BÀI TOÁN CỤ THỂ
Hệ thống: E-commerce lớn (Shopee/Lazada-style)
Yêu cầu thực tế
1. Hệ thống microservices
2. Dữ liệu phân tán
3. Cần:
· Fraud detection
· Recommendation
· Customer 360 view
4. KHÔNG ảnh hưởng transaction (order, payment)

1️⃣ ĐỊNH NGHĨA RANH GIỚI RẤT QUAN TRỌNG
❌ Ontology KHÔNG:
· Tạo đơn hàng
· Thanh toán
· Khoá hàng
✅ Ontology CHỈ:
· Hiểu “ai là ai”
· Hiểu “liên quan thế nào”
· Suy luận pattern

2️⃣ ONTOLOGY (RẤT CỤ THỂ)
Core concepts (ít nhưng chuẩn)
Person
 └─ Customer

Order
Payment
Device
Address
Relationships
Customer ──places──> Order
Order ──paidBy──> Payment
Customer ──uses──> Device
Customer ──hasAddress──> Address
Attributes (chỉ semantic)
Customer:
 customerId
 isVerified
 riskLevel

Order:
 orderId
 orderAmount
📌 Không có:
· status chi tiết
· timestamp cực mịn
· business rule transactional

3️⃣ MICRO SERVICES (DDD – KHÔNG ĐỤNG ONTOLOGY)
	Service
	DB
	Trách nhiệm

	OrderSvc
	orders_db
	Tạo & huỷ đơn

	PaymentSvc
	payment_db
	Thanh toán

	UserSvc
	user_db
	Account

	FraudSvc
	fraud_db
	Scoring

➡️ Không service nào gọi ontology trực tiếp

4️⃣ DATA FLOW (THỰC TẾ)
4.1 Order Service phát event
OrderCreated {
 "orderId": "O123",
 "userId": "U77",
 "amount": 1200
}

4.2 Semantic Mapping (ASYNC)
Mapping table:
OrderCreated.userId → Ontology: Customer.customerId
OrderCreated.orderId → Ontology: Order.orderId
Ontology triple sinh ra:
(Customer U77) ──places──> (Order O123)

4.3 Payment Service phát event
PaymentSuccess {
 "paymentId": "P9",
 "orderId": "O123"
}
Mapping:
(Order O123) ──paidBy──> (Payment P9)

5️⃣ KNOWLEDGE GRAPH (KHÔNG PHẢI DB CHÍNH)
KG lưu:
U77
 ├─ places → O123
 │ └─ paidBy → P9
 └─ uses → Device D01
📌 KG không lưu:
· Order status realtime
· Balance
· Inventory

6️⃣ SỬ DỤNG ONTOLOGY ĐỂ SUY LUẬN (RẤT CỤ THỂ)
Rule đơn giản
IF
 Customer uses >3 Devices
 AND places Order.amount > 1000
THEN
 Customer.riskLevel = HIGH
➡️ FraudSvc đọc riskLevel, không đọc raw data.

7️⃣ KIẾN TRÚC TỪNG LAYER
┌──┐
│ Application Layer │
│ OrderSvc PaymentSvc UserSvc FraudSvc │
└──────────────▲───────────────────────────────┘
 │ Events (Avro / JSON)
┌──────────────┴───────────────────────────────┐
│ Data Layer │
│ Kafka | Operational DBs │
│ Knowledge Graph (Neo4j / RDF) │
└──────────────▲───────────────────────────────┘
 │ Semantic Mapping (ETL/Stream)
┌──────────────┴───────────────────────────────┐
│ Ontology Layer │
│ Concepts / Relations / Rules │
└──────────────▲───────────────────────────────┘
 │
┌──────────────┴───────────────────────────────┐
│ Infrastructure Layer │
│ Kubernetes / IAM / Storage │
└──┘

8️⃣ ĐIỂM CỰC KỲ QUAN TRỌNG (NGƯỜI MỚI RẤT HAY SAI)
❌ Sai
· OrderSvc gọi ontology để kiểm tra fraud
· Ontology quyết định block payment
· Ontology thay DB
✅ Đúng
· Ontology gợi ý
· FraudSvc quyết định
· Transaction vẫn thuần DB

9️⃣ ĐỘ CHÍNH XÁC: CHẤP NHẬN CÓ KIỂM SOÁT
	Thành phần
	Đúng tuyệt đối

	Order DB
	✅

	Payment DB
	✅

	Ontology riskLevel
	❌ (eventual)

Một bài toán CỤ THỂ: phê duyệt giao dịch (compliance)
Giả sử bạn có hệ thống xử lý giao dịch tài chính nội bộ.
❌ Trước khi dùng DMN (cách mọi team từng làm)
if (user.type === 'personal') {
 if (amount > 100_000_000) {
 reject('limit exceeded');
 }
}

if (user.isBlacklisted) {
 reject('blacklist');
}

if (amount > 50_000_000 && user.risk === 'high') {
 manualReview();
}
Vấn đề thực tế
· Logic nằm rải trong code
· Không biết rule nào đang áp dụng
· Sửa rule → deploy
· Không giải thích được rõ ràng cho audit
👉 Camunda DMN sinh ra để giải quyết đúng vấn đề này

2️⃣ Sau khi dùng Camunda DMN (thấy lợi ích NGAY)
✅ DMN Decision Table (ví dụ thật)
Decision: TransactionDecision
	Rule
	userType
	amount >
	risk
	Decision
	Reason

	R1
	personal
	100M
	-
	REJECT
	Personal limit exceeded

	R2
	*
	-
	high
	REVIEW
	High risk customer

	R3
	*
	-
	-
	APPROVE
	Valid transaction

📌 Bạn nhìn bảng là hiểu luật
📌 Non-tech đọc được
📌 Audit đọc được

3️⃣ NodeJS gọi Camunda DMN (code rất ngắn)
const decision = await axios.post(
 'http://camunda:8080/engine-rest/decision-definition/key/TransactionDecision/evaluate',
 {
 variables: {
 userType: { value: 'personal', type: 'String' },
 amount: { value: 120000000, type: 'Long' },
 risk: { value: 'low', type: 'String' }
 }
 }
);

const result = decision.data[0];
console.log(result.decision.value); // REJECT
console.log(result.reason.value); // Personal limit exceeded
👉 Lợi ích thấy NGAY:
· Không cần đọc code
· Decision + Reason rõ ràng
· Không cần AI mà explain được

4️⃣ “Ontology” nằm ở đâu trong bài toán này?
👉 Nó không nằm trong từ OWL hay RDF
👉 Nó nằm ở cách bạn thiết kế DMN
Ontology thực dụng =
	Ontology
	DMN

	Concept
	Input variable

	Relation
	DRD

	Rule
	Decision row

	Explanation
	Output column

Bạn đã dùng ontology rồi, chỉ là ở dạng “bảng”.

5️⃣ Lợi ích THỰC SỰ (không mơ hồ)
🎯 1. Business đổi rule KHÔNG cần dev
· Thay bảng
· Deploy DMN
· Xong
🎯 2. Explainable decision
· “Bị từ chối vì Rule R1”
· Có evidence
🎯 3. Audit & compliance
· Log: input + rule + decision
· Truy vết được 100%
🎯 4. Code sạch hơn
· NodeJS chỉ gọi decision
· Không chứa business logic

6️⃣ Khi nào DMN KHÔNG đáng dùng?
Nói thật luôn:
❌ CRUD đơn giản
❌ Logic 1–2 if
❌ Không cần explain
👉 Dùng if–else nhanh hơn

